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We evaluate the transmission and conductance through magnetic barrier structures in bilayer graphene. In
particular we consider a magnetic step, single and double barriers, �-function barriers, as well as barrier
structures that have average magnetic field equal to zero. The transmission depends strongly on the direction of
the incident electron or hole wavevector and gives the possibility to construct a direction-dependent wavevec-
tor filter. The results contrast sharply with previous results on single-layer graphene. In general, the angular
range of perfect transmission becomes drastically wider and the gaps narrower. This perfect transmission range
decreases with the number of barriers, the barrier width, and the magnetic field. Depending on the structure, a
variety of transmission resonances occur that are reflected in the conductance through the structure.
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I. INTRODUCTION

Recently the study of single-layer, bilayer, and multilayer
graphene has been intensified. The reason is that graphene’s
electronic properties are drastically different from those, say,
of conventional semiconductors. Charge carriers in a wide
single-layer graphene behave like “relativistic” chiral mass-
less particles with a “light speed” equal to the Fermi velocity
and possess a gapless linear spectrum close to the K and K�
points.1–3 Another consequence is that single-layer and
equally bilayer graphene display an unconventional quantum
Hall effect.4,5 One major consequence is the perfect transmis-
sion through arbitrarily high and wide barriers, referred to as
Klein tunneling.6–9 In addition, the submicron long mean-
free paths1 will have important consequences for the design
of graphene-based devices.

In contrast to carriers in single-layer graphene, those in
bilayer graphene possess a quadratic spectrum near the K
points and show no Klein tunneling.7 Adsorbates and/or gate
potentials induce an energy gap due to the tunnel coupling
between the layers that is more appropriate for certain appli-
cations, e.g., for improving the on/off ratio in carbon-based
transistors. A recent review of the properties of graphene is
given in Ref. 10.

In a previous paper we studied the transmission through
magnetic barrier structures and its angular confinement in
single-layer graphene.11 In doing so we extended signifi-
cantly earlier limited results12 for a barrier and a step by
considering double barriers, �-function barriers, and barrier
structures with inhomogeneous magnetic field profiles which
have an average magnetic field of zero that can be realized
using nanostructured ferromagnetic strips that are positioned
above the graphene layer. We also contrasted the results for
electrons with those obtained from the Schrödinger
equation.13–15 The aim of the present work is to extend our
previous study on tunneling through various magnetic barrier
structures to bilayer graphene �see Fig. 1 for the layout of the
system and Fig. 2 for different magnetic field profiles that
can be produced� and critically contrast them with those for
single-layer graphene.11,12,16,17 As will be seen, the tunnel

coupling between the layers significantly modifies some re-
sults and further supports bilayer graphene as a promising
material for carbon-based devices. The paper is organized as
follows. In Sec. II we present the basic formalism. In Sec.
III, we present the transmission and conductance results for a
magnetic step and single or double barriers and for barrier
structures with zero average magnetic field. The limit of
�-function magnetic barriers will also be given for illustra-
tive purposes. We make concluding remarks in Sec. IV.

II. BASIC FORMALISM

A. Homogeneous magnetic field

Before we consider transport in the presence of inhomo-
geneous magnetic fields, we present the energy levels and
corresponding wave functions in a constant magnetic field.
Consider a homogeneous magnetic field B0 normal to the
two-dimensional �2D� plane �x ,y� of bilayer graphene. To
study transmission through one-dimensional �1D� magnetic
barriers we use the Landau gauge for the vector potential
A�x�= �0,B0x ,0� and make the change p→p+eA, where p
is the momentum operator. The one-electron Hamiltonian for
a graphene bilayer is

Bilayer graphene

Magnetic strip

FIG. 1. �Color online� Layout of the system: a ferromagnetic
stripe on top of a bilayer graphene sheet separated by a thin oxide
layer.
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H =�
V1 � t 0

�† V1 0 0

t 0 V2 �†

0 0 � V2

� �1�

with �=vF�px+ i�py +eA��, where vF=1�106 m /s is the
Fermi velocity, V1 and V2 are the potentials at the two layers,
and t is the tunnel coupling between the layers assumed to be
constant. This Hamiltonian is valid near the Dirac point K or
K�. Thus scattering between the K and K� valleys is ne-
glected. This scattering was shown18 to be negligible for
fields below 104 T in single-layer graphene; we expect this
to be the case in bilayer graphene as well. It also neglects the
real spin of the electrons. However, for the fields of interest
here, B0�1 T, the Zeeman energy is of the order of
10−1 meV, i.e., negligible compared to the Fermi energy
EF�10 meV.3 For more details as well as the neglect of
trigonal warping appropriate for high energies, see Ref. 19.

To simplify the notation we introduce the length scale
�B= �� /eB0�1/2 and the energy scale E0=�vF /�B. This allows
us to define the following dimensionless quantities:

B�x� → B0B�x�, A�x� → B0�BA�x�, r� → �Br� ,

v� → vFv� , E → E0E, t → E0t�.

The Hamiltonian commutes with py and therefore is a
conserved quantity. This allows us to write
��x ,y�=��x�exp�ikyy� and solve the equation H��x ,y�
=E��x ,y� for the wave function ��x ,y�
= (	a�x� ,	b�x� ,	c�x� ,	d�x�)Texp�ikyy� with T denoting the
transpose. Then the components of ��x ,y� obey the follow-
ing coupled differential equations:

�
− i�d/dx − �ky + x��	b + t�	c = �E − V1�	a,

− i�d/dx + �ky + x��	a = �E − V1�	b,

− i�d/dx + �ky + x��	d + t�	a = �E − V2�	c,

− i�d/dx − �ky + x��	c = �E − V2�	d.
	 �2�

Setting V0= �V1+V2� /2, 
V=V1−V2, �=
V /2, and
�=E−V0, Eq. �2� can be decoupled by eliminating the un-
knowns one at a time. The result for 	a is

�d2/dz2 − z2/4 + �
/2�	a = 0, �3�

where �
=�2+�2
 ��1−2���2+ ��2−�2�t�2�1/2 and

2�x+ky�=z. The solutions of Eq. �3� can be written in terms
of the Weber functions. For an asymptotically vanishing
wave function for z→� we define 	a�z�=e−z2/4g�z� and sub-
stitute it in Eq. �3�. For �=0 and using standard power-series
procedures we complete the solution and find the energy
spectrum

�n,
 = 
 �2n + 1 +
t�2

2

 � t�4

4
+ �2n + 1�t�2 + 1
1/2�1/2

,

�4�

where n is an integer, the Landau-level index. Notice the
similarity with the spectrum for single-layer graphene,
En= 

2�n+1� or En= 

2n, and the difference from that
for the usual electrons with parabolic energy-momentum re-
lation En=��c�n+1 /2� consisting of equidistant Landau
levels. For t→0, Eq. �4� reduces to that of two uncoupled
layers with spectrum En= 

2n+1
1. The spectrum for
the first three lowest levels is shown in Fig. 3 as a function of
the strength t of the interlayer coupling for a constant mag-
netic field B=1 T. The usual value t=400 meV corresponds
to t�=15. Notice that varying t� for fixed t is equivalent to
changing the magnetic field because E0�
B. In the rest of
the paper we fix t=400 meV.

The solution of Eq. �3� can be also written in terms of the
well-known Hermite polynomials Hn�x�. However, this solu-
tion is not well suited for regions with discontinuities in the
magnetic field that we study here. For this reason we will use
Weber functions which are more appropriate. The various
wave function components, up to a normalization constant,
are
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FIG. 2. �Color online� Magnetic field and corresponding vector
potential at a distance z0=0.1 under the stripe �see Fig. 1� for four
different configurations. The stripe is magnetized perpendicularly to
its plane in �a� and parallel to it in �b�. The profiles in �c� are for a
current carrying metallic stripe and those in �d� for a superconduct-
ing film containing a normal stripe.
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FIG. 3. �Color online� Energy spectrum of a graphene bilayer as
a function of t for a homogeneous magnetic field B=1 T. The
single-layer result is obtained for t=0.
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�
�z� � �
D�p
,z�

�− i
2p
/��D�p
 − 1,z�
��/t� − 2p
/t��D�p
z�

�i
2/����/t� − 2p
/t���D�p
 + 1,z�
� , �5�

where p
= ��
−1� /2. In regions where the magnetic field is
zero and for constant potentials V1 and V2 with �=0 we
introduce the right-moving solutions

��,

R �x,y� = N
���, � kx


 
 iky,�,kx

 + iky�Tf+ �6�

and the left-moving ones �N
= �4Ly�kx

�−1/2�

��,

L �x,y� = N
���, 
 kx


 
 iky,�,− kx

 + iky�Tf− �7�

with f
� f
�x ,y�=e
ikx

x+ikyy and Ly being the length of the

structure along the y direction. The corresponding energy
spectrum and wavevector are

� = � t�/2 
 �t�2/4 + K
�1/2, �8�

kx

 = ��2 − ky

2 
 �t��1/2, �9�

where K
=kx
2
+ky

2. The normalization factor N
 is obtained
from the requirement of unit current carried by each state in
the positive or negative x direction,

I = ev�
0

W

dy �†��x 0

0 �x
�� . �10�

B. Conductance

We will also calculate the conductance G for various
magnetic barrier structures by introducing it as the electron
flow averaged over half the Fermi surface.14 We evaluate G
from the standard expression for the total current density J,
from left to right, given by

J = − e�
0

�

dE�
−�/2

�/2

T�E,	��f l�E� − fr�E��vx�E���E�Ed	 .

�11�

Here f l�E� (fr�E�) is the Fermi-Dirac function on the left
�right�, ��E� is the density of states, and T�E ,	� is the trans-
mission as a function of the energy E and the angle of inci-
dence 	 relative to the x direction. In the linear transport
regime and for low temperatures we can replace f l− fr by a �
function and obtain the conductance

G = G0�
−�/2

�/2

T�EF,EF sin 	�cos 	d	 , �12�

with G0= �2e2 /h��Ly /��vF��EF
2 + tEF�1/2 and EF is the Fermi

energy.

III. MAGNETIC FIELD STEP AND SINGLE AND DOUBLE
BARRIERS

A. Magnetic field step

We consider a region x�0, in which there is no magnetic
field, followed by one x�0 in which there is a constant
magnetic field B. This is described by

B�x� = B0��x� . �13�

For x�0 the solution is that of a free particle while for
x�0 the solution is a combination of the solutions for the
homogenous magnetic field case, i.e., Eq. �5�. The solution
for x�0 can be written as

��,kx




 = e
kx

x�1,−

i

�
�
kx


 + ky�, � 1, 

i

�
�
kx


 − ky�
T

�14�

and the full wave function is

�I = c1��,kx
+

+ + c2��,kx
−

+ . �15�

For x�0 the result is

�II = c3�+�z� + c4�−�z� , �16�

with z=
2�x+ky� and �
�z� given by Eq. �5�. Matching the
solutions at x=0 gives the homogeneous set of algebraic
equations in the matrix form

�
1 1 s+ s−

z+ z− b+ b−

a+ a− f+ f−

e+ e− g+ g−
��

c1

c2

c3

c4

� = 0. �17�

Here z
= −i
E �kx


+ky�, e
= −i
E �kx


−ky�a
, s
=D�p
 ,
2ky�,
f
= � E

t�
− 2p


t�E
�s
, b
= �−i
2p
 /��D�p
−1,
2ky�,

g
= �i
2 /���� / t�−2p
 / t���D�p
+1,
2ky�, and a


=� / t�+ �kx

2−ky

2� /�t�. The dispersion relation is obtained
from the condition det�M�=0. As a function of ky the spec-
trum is shown in Fig. 4�a�. We contrast it with that for a
single layer in Fig. 4�b�. Both spectra terminate at the corre-
sponding free-electron results with the single-layer straight
lines E=�vFky in �b� replaced with the parabolas
E=�vFky��t� /2
 �t�2 /4+ky

2�1/2� in �a�. Notice also how dif-
ferent the level spacing is between the two panels. For large
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FIG. 4. �Color online� Bound-state energy spectrum vs
wavevector component ky parallel to the magnetic step. Panel �a� is
for a bilayer step with t�=15 and panel �b� for a magnetic step in
single-layer graphene.
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negative ky the particles, localized around x0=−kylB, are deep
into the magnetic field region and their spectrum is that of
the previously mentioned Landau levels. For ky values close
to the free-particle branch �dotted curves� the energy spec-
trum attains a dispersion �with the exception of the n=0 or
E=0 level� implying that the states have a nonzero velocity.
Such states are confined in the x direction near the barrier
edge �see Fig. 5� and move along it.

B. Single and double barriers

1. Energy spectrum

We consider a magnetic barrier of width d shown in the
inset of Fig. 6�a�. The corresponding vector potential A�x� is
given by

A�x� = B0�− d/2, x � − d/2
x , − d/2 � x � d/2
d/2, x � d/2.

	 �18�

In region I for x�−d /2 the solution can be written as

�I = c1�E,kx
+

+ + c2�E,kx
−

+ , �19�

in region II �−d /2�x�d /2� as

�II = f1�−�z� + f2�−�− z� + f3�+�z� + f4�+�− z� �20�

with z=
2�ky +x�, and in region III �x�d /2� as

�III = h1�E,kx
+

− + h2�E,kx
−

− . �21�

The continuity of the wave function at the edges of the bar-
rier x= 
d /2 and current conservation give

�kx



I �− d/2� = �II�− d/2� ,

�II�d/2� = �kx



III �d/2� . �22�

From these relations we can connect �III�d /2� with
�I�−d /2� with a matrix. Setting the determinant of this ma-
trix equal to zero gives the dispersion relation. The resulting
expressions are rather involved and will not be given here.
Numerical results for the dispersion relation are given in Fig.
6�a� and are contrasted with the corresponding ones for a
single-layer barrier in Fig. 6�b�. As in Fig. 4, we notice here
the same difference in level spacing and the bending of the
levels near the free-particle result where ky is replaced with
ky 
d /2 �red dashed curves�. Notice that in contrast to the
magnetic step case, where the spectrum is limited only from
the right, it is now limited from the left as well and the
pertinent ky values fall, approximately, in the range
−3�ky�B�3.

2. Transmission

In contrast to the magnetic step problem, where the trans-
mission is zero for any value of the momentum, in the case
of a magnetic barrier of finite width the transmission can
attain nonzero values. To evaluate the transmission through a
single magnetic barrier we write the solution in the three
domains, denoted earlier as I, II, and III, as follows. Region
I �x�−d /2�:

�

I = �E,


R + r+

�E,+

L + r−

�E,−

L , �23�

region II �−d /2�x�d /2�:

�II = c1�−�z� + c2�−�− z� + c3�+�z� + c4�+�− z� , �24�

and region III �x�d /2�:

�

III = t+


�E,+
R + t−


�E,−
R . �25�

Here r
 and t
 are the reflection and transmission coeffi-
cients, respectively. After matching the solutions at
x= 
d /2 we obtain the transmission matrix as

t�E,q� = �t+
+�E,ky� t−

+�E,ky�
t+
−�E,ky� t−

−�E,ky�
� , �26�

and the transmission probability from

T = Tr�tt†� . �27�

A contour plot of the transmission probability is shown in
panel �a� of Fig. 7 and is contrasted with that for a single-
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FIG. 5. �Color online� The electron probability density
���2= �	a�2+ �	b�2+ �	c�2+ �	d�2 of the n=1 Landau level, in a mag-
netic step, for different values of ky.

3210-1-2-3

E
/E

0

3210-1-2-3

1

2

0

-1

-2

0.5

1

0

-0.5

-1.5

1.5

-1

E
/E

0

k ly B

(a) (b)

k ly B

FIG. 6. �Color online� As in Fig. 4 for a magnetic barrier of
width d=3lB.
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layer graphene barrier in panel �b�. Comparing the two pan-
els we see that in the bilayer case the angular range of perfect
transmission becomes wider whereas the energy gap be-
comes narrower. For real wavevectors kx we can express the
angular confinement of the transmission through a bilayer
barrier as

− 1 � sin �
 � 1 − d/
E2 
 Et�, �28�

where �
=arctan��ky −d /2� /kx

�. In Fig. 7�a� we have

�=�+ for E�0 and �=�− for E�0. The corresponding result
for a single-layer barrier is obtained from Eq. �28� for t�=0.
If we do not use the dimensionless units, the last term in Eq.
�28� is multiplied by �=�vF /�B

2 , i.e.,

d/E → �d/E,d/�E2 
 Et�1/2 → �d/�E2 
 Et�1/2. �29�

For a double barrier we proceed in the same manner as for a
single one with the vector potential shown in the inset of Fig.
8 and given by

A =�
0, x � − L/2 − d

�x + �L/2 + d��/d , − L/2 − d � x � − L/2
1, − L/2 � x � L/2
�x − �L/2 − d��/d , L/2 � x � L/2 + d

2, x � L/2 + d .
	 �30�

We obtain the transmission probability after matching the
solutions at the four interfaces. In Fig. 8�a� we show a con-
tour plot of the transmission, as a function of the angle of
incidence and energy, and contrast it with that for the case of
graphene in Fig. 8�b�. We see again the same similarities and
differences between the two panels that we saw in Fig. 7. In
addition, upon comparing panel �a� in both figures we see
how the gap widens and the angular range of perfect trans-
mission shrinks upon increasing the number of barriers. Thus
the allowed range of carriers that are able to transmit through
both barriers is smaller than for a single magnetic barrier.
Notice also that relative to the single-layer graphene �see Fig.

8�b�� we are forced, due to the linear spectrum, to consider
wider intervals in energy to see any transmission.

C. Structures with ŠB‹=0

Here we consider magnetic structures with inhomoge-
neous magnetic field profiles but such that the average mag-
netic field vanishes, i.e., with �B�=0, and compare the trans-
mission probability through them with that through the same
single-layer structures with linear spectrum. Such magnetic
field profiles are typically obtained when we overlay nano-
structured ferromagnetic stripes on a graphene bilayer �see
Fig. 2�a��. In Fig. 9�a� we show a contour plot of the trans-
mission probability for the structure shown in its inset for
d=3lB and in Fig. 9�b� the corresponding single-layer result.
In this case the transmission probability is symmetric with
respect to the angle of incidence and the angular range for �
is given by
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FIG. 7. �Color online� �a� Contour plot of the transmission T
through a magnetic barrier with d=2lB. The corresponding result
for a single-layer graphene barrier is shown in �b�. The angle � is
measured from the direction of normal incidence.
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FIG. 8. �Color online� �a� Contour plot of the transmission T
through a double magnetic barrier with d= lB and L=2lB. The result
for single-layer graphene is shown in �b�.
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FIG. 9. �Color online� �a� Contour plot of the transmission T
through a barrier structure �see inset� with �B�=0 and d=1.5lB. The
result for single-layer graphene is shown in �b�.
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− 1 + d/
E2 
 Et� � sin �
 � 1 − d/
E2 
 Et�. �31�

Beyond this range, there is still a nonzero tunneling because
of the evanescent wave solutions inside the magnetic barrier.
The result for single-layer graphene is obtained by setting
t�=0 in Eq. �31� and reads

− 1 + d/E � sin � � 1 − d/E . �32�

Again, Eq. �29� applies if we use the standard units.
In Fig. 10 we show a contour plot of the transmission for

a two-unit structure, the unit shown in the inset of Fig. 9�a�.
Again panel �a� shows the bilayer result and panel �b� the
single-layer one. Notice that as compared to the simple
double magnetic barrier structure �see Fig. 8� the transmis-
sion: �1� is even with respect to the angle of incidence, �2�
exhibits a very rich set of resonances, and �3� is mainly non-
zero for angles close to perpendicular incidence. The con-
ductance of this double unit is shown in Fig. 11�b� and is
contrasted with the one for a single unit �see Fig. 9�a��. Clear
resonances are observed as a function of the Fermi energy of
the particles. We compare these results with the correspond-
ing one for the simple double magnetic barrier �see inset of
Fig. 8�a�� in Fig. 11�a� for two different interbarrier dis-
tances. Only a very weak resonant structure is found when
the magnetic barriers are separated over larger distances. No-
tice also the zero conductance region for small Fermi energy
which is absent in Fig. 11�b� and which can be easily under-
stood from the transmission plots �see Fig. 8�.

D. Delta-function magnetic barriers

It is instructive to consider the limit of delta-function
magnetic barriers which considerably simplifies the calcula-
tions. For a single magnetic �-function barrier we have
B�x�=B0lB��x�; the corresponding vector potential is
A�x�=B0lB���x�−��−x�� /2, where ��x� is the step function.
Here we have two regions x�0 and x�0. The solutions for
regions I and II are

�

I = �E,


R + r+

�E,+

L + r−

�E,−

L , �33�

�

II = t+


�E,+
R + t−


�E,−
R . �34�

After matching the wave functions at x=0, the transmission
amplitudes t�


 can be combined in the transmission matrix
given by Eq. �26�; the transmission probability is given by
Eq. �27�.

For two magnetic �-function barriers �shown in Fig.
12�a�� the corresponding vector potential is

A�x� = B0�B�0, x � − L/2
1, − L/2 � x � L/2
0, x � L/2.

	 �35�

We consider three regions I �x�−L /2�, II �−L /2�x�L /2�,
and III �x�L /2�. The three solutions are

�

I = �E,


R + r+

�E,+

L + r−

�E,−

L , �36�
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FIG. 10. �Color online� �a� Contour plot of the transmission T
through a unit twice that shown in Fig. 9�a� with d= lB and L=3lB.
�b� As in �a� for the same structure on single-layer graphene.

0

1

2

0

1

2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

0 0.5 1-0.5-1
0

1

2

(a)

(b)

E/E0

G
/G

0
G

/G
0 L = 10 lB

L = 10 lB

FIG. 11. �Color online� Conductance G as a function of energy
through a double magnetic barrier �inset of Fig. 8� with d= lB for
two different L’s. �b� G through the structure shown in Fig. 10�a�
with �B�=0, d= lB, and L=10lB. The inset shows G through the
structure shown in Fig. 9�a� with d=3lB.
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FIG. 12. �Color online� Contour plot of the transmission through
two magnetic �-function barriers, of equal strength but opposite
sign, with t=15E0. It is L=10�B in �a� and L=40�B in �b�.
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�

II = c1�E,+

R + c2�E,−
R + c3�E,+

L + c4�E,−
L , �37�

and

�

III = t+


�E,+
R + t−


�E,−
R . �38�

Here kx�

= �E2− �ky +1�2
Et��1/2 ,kx�


=kx

. After matching at

x=−L /2 and x=L /2 we can find the transmission matrix
elements. Numerical results for the transmission probability
are shown in Fig. 12 for two different values of the distance
between the � functions. We see clearly well-defined reso-
nances for ��� /4, the number of which increases apprecia-
bly with increasing value of L. These resonances are a con-
sequence of quantum mechanical interference effects which
occur for kx=k cos �=n� /L with E=�vFk. The conductance
through two magnetic � functions is shown in Fig. 13. Notice
the similarity between Figs. 13 and 11�a�. Both show a zero
conductance region for small energies which are more pro-
nounced in both � functions having the same sign. There are
also weak oscillations which are more pronounced when the
interbarrier separation is large.

IV. CONCLUDING REMARKS

We evaluated the transmission through various magnetic
barrier nanostructures on bilayer graphene and contrasted it

with that in the same structures on single-layer graphene. In
particular, we treated a magnetic step, single and double
regular or �-function barriers, as well as complex structures
with inhomogeneous magnetic field profiles but such that the
average magnetic field vanishes. To demonstrate the main
physics we limited ourselves to simple model magnetic field
profiles that qualitatively approximate experimentally realiz-
able nonhomogeneous magnetic field profiles.

We showed that the transmission exhibits a strong depen-
dence on the direction of the incident electron or hole
wavevector. In general, the angular range of perfect transmis-
sion becomes drastically wider and the gaps drastically nar-
rower. This perfect transmission range decreases with in-
creasing number of barriers. Moreover, the transmission
through the complex structures shows much more pro-
nounced resonances than that through single or double bar-
riers. An important feature of the transmission results is their
dependence on the angle of incidence as shown in several
figures and highlighted in Ref. 11 for a single barrier: the
transmission is finite only in a certain range of angles of
incidence �cf. Eqs. �3�, �28�, and �31��. Given the connection
between the wavevectors and �, this is equivalent to
wavevector filtering or confinement. One can further modify
the angular dependence of the transmission with double bar-
riers �cf. Fig. 8�. The main parameters that control this an-
gular dependence are the width of the barriers/wells, the en-
ergy of the incident electrons, and the magnetic field �cf. Eq.
�29��. Given the rapid progress in the field and the quest for
carbon-based nanostructure devices,15 we expect that the
predictions/findings of this paper will be tested experimen-
tally in the near future. We defer to future work the influence
of spin and spin-orbit interactions in transport through these
or similar graphene nanostructures.
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